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Rydberg-London Potential for Diatomic Molecules and Unbonded Atom Pairs

Kevin Cahill1, 2, ∗ and V. Adrian Parsegian3, †

1Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
2Center for Molecular Modeling, Center for Information Technology,

National Institutes of Health, Bethesda, Maryland 20892-5624
3National Institute of Child Health and Human Development,

National Institutes of Health, Bethesda, Maryland 20892-0924

(Dated: October 18, 2004)

We propose and test a pair potential that is accurate at all relevant distances and simple enough for
use in large-scale computer simulations. A combination of the Rydberg potential from spectroscopy
and the London inverse-sixth-power energy, the proposed form fits spectroscopically determined
potentials better than the Morse, Varnshi, and Hulburt-Hirschfelder potentials and much better
than the Lennard-Jones and harmonic potentials. At long distances, it goes smoothly to the correct
London force appropriate for gases and preserves van der Waals’s “continuity of the gas and liquid
states,” which is routinely violated by coefficients assigned to the Lennard-Jones 6-12 form.

There are at least three classes of interatomic poten-
tials. Commercial codes use the Lennard-Jones

VLJ(r) = |V (r0)|
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and harmonic

VH(r) = V (r0) +
(r − r0)

2
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forms, which are accurate near the minimum at r = r0.
But this first class of potentials may be too simple for
complex materials away from from equilibrium.

The Morse [1]

VM (r) = |V (r0)|
[
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(x = r − r0, κ =
√

ke/(2|V (r0)|)), Varnshi [2]

VV (r) = |V (r0)|
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, (4)

(β = (κr2
0 − 1)/(2r2

0)), and Hulburt-Hirschfelder [3]

VHH(r) = VM (r) + |V (r0)| c
′κ3x3 e−2κx(1 + κb′x) (5)

(for b′, c′, see ref.[4]) potentials represent a second class
of potentials [4] accurate over a wider range of distances.

Quantum chemists [5, 6, 7, 8, 9] have derived a third
class that reproduce spectroscopic and thermodynamic
data with impressive fidelity. But the potentials of this
class involve many parameters and may be too cumber-
some for use in large-scale simulations.

We propose and test a form

V (r) = ae−b r (1 − c r) −
d

r6 + e r−6
(6)

that is nearly as accurate as the class-3 potentials but
simpler than many class-2 potentials. It is a combina-
tion of the Rydberg formula used in spectroscopy and
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FIG. 1: The hybrid form V (with a = 53.8 eV, b = 2.99 Å−1,
c = 2.453 Å−1, d = C6 = 3.884 eV Å6, and e = 47.6 Å12)
(solid, red) fits the RKR spectral points for the ground state
of molecular hydrogen (pluses, blue) and gives the correct
London tail for r > 3 Å. The Lennard-Jones VLJ (dashes,
green) and harmonic VH (dots, magenta) forms fit only near
the minimum.

the London formula for pairs of atoms. In Eq.(6), the
terms involving a, b, and c were proposed by Rydberg [10]
to incorporate spectroscopic data, but were largely ig-
nored until recently [11, 12]. The constant d = C6 is
the coefficient of the London tail. The new term e r−6

cures the London singularity. As r → 0, V (r) → a,
finite; as r → ∞, V (r) approaches the London term,
V (r) → −d/r6 = −C6/r6. In a perturbative analy-
sis [13], the a, b, c terms arise in first order, and the d
term in second order.

To test whether the hybrid V (r) can represent covalent
bonds far from equilibrium, we used Gnuplot [14] to fit
Eq.(6) to empirical potentials for molecular H2, N2, and
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FIG. 2: The hybrid form V (Eq.(6) as in Fig. 1, solid, red) fits
the RKR spectral points for the ground state of molecular hy-
drogen (pluses, blue). The Morse VM (Eq.(3), dashes, green),
Varnshi VV (Eq.(4), dots, magenta), and Hulburt-Hirschfelder
VHH (Eq.(5), dot-dash, cyan) are too low for 1.5 < r < 3 Å.
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FIG. 3: For the ground state of molecular nitrogen, the pro-
posed potential V of Eq.(6) (with a = 3.25 keV, b = 4.30 Å−1,
c = 1.1906 Å−1, d = 14.1 eV Å6, and e = 27.1 Å12) (solid,
red) fits the RKR spectral points (pluses, blue) and the FO
points (x’s, cyan). VLJ and VH as in Fig. 1.

O2 obtained from spectroscopic data [15, 16, 17] by the
RKR (Rydberg [10], Klein [18], Rees [19]) method, set-
ting d equal to the London values. Figure 1 shows that
the hybrid potential of Eq.(6) (solid, red) goes through
the RKR points for H2 (pluses, blue) from 0.5 to 4 Å. Fit-
ted to the minimum, the harmonic potential (2) (dashes,
green) and the Lennard-Jones potential (1) (dashes, blue)
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FIG. 4: For the ground state of molecular nitrogen, the hybrid
form V (Eq.(6), as in Fig. 3, solid, red) fits the RKR spectral
points (pluses, blue) and the FO points (x’s, black). VM , VV ,
& VHH as in Fig. 2.
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FIG. 5: For the ground state of molecular oxygen, the poten-
tial V of Eq.(6) (with a = 3.61 keV, b = 4.48 Å−1, c = 1.05
Å−1, d = 16.08 eV Å6, and e = 58.4 Å12) (solid, red) fits the
RKR points (pluses, blue). VLJ and VH as in Figs. 1 & 3.

are accurate only near the minimum at 0.74 Å. Fig-
ures 3 & 5 show that the hybrid potential V (r) fits the
N2 and O2 RKR points [16, 17] and the N2 first-order
(FO) points [20] between 1 and 1.8 Å. The Lennard-
Jones and harmonic potentials of Eqs.(1–2) fit only near
the minima.

How does the hybrid form compare with the class-2
potentials of Eqs.(3–5)? Figures 2, 4, & 6 show that
for 1.4 < r < 2 Å the hybrid V (r) is closer than (3–
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FIG. 6: For the ground state of molecular oxygen, the hybrid
form V (Eq.(6), as in Fig. 5, solid, red) fits the RKR spectral
points (pluses, blue). VM , VV , & VHH as in Fig. 2.
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FIG. 7: The potential V (Eq.(6) for the Ar-Ar ground state
with a = 1720 eV, b = 2.6920 Å−1, c = 0.2631 Å−1, d =
37.943 eV Å6, and e = 177588 Å12) (solid, red) fits the Ar2
Aziz potential (pluses, blue) with the correct London tail.
When matched at the minimum, the Lennard-Jones form VLJ

(Eq.(1) with r0 = 3.757 Å and V (r0) = −0.01234 eV) (dashes,
green) is too low for r > 4 Å.

5) to the RKR points. A useful estimate of how well a
particular potential VP (r) fits N data points VD(ri) is
the dimensionless error

δ =
1

|VD(r0)|

[

1

N

N
∑

i=1

(VP (ri) − VD(ri))
2

]1/2

. (7)

For H2, N2, and O2, the average error δ was 59.7 for VH ,
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FIG. 8: Positive potential V (Eq.(6) as in Fig. 7), Ar2 Aziz
potential (pluses, blue), L-J form VLJ (Eq.(1) as in Fig. 7).
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FIG. 9: The potential V (Eq.(6) for the Kr-Kr ground state
with a = 2499 eV, b = 2.5249 Å−1, c = 0.2466 Å−1,
d = 78.214 eV Å6, and e = 199064 Å12) (solid, red) fits
the Kr2 Aziz points (pluses, blue) with the correct London
tail. When matched at the minimum, the Lennard-Jones form
VLJ (Eq.(1) with r0 = 4.008 Å and V (r0) = −0.017338 eV)
(dashes, green) is too low for r > 4 Å.

49.3 for VLJ , 0.037 for VM , 0.031 for VV , 0.021 for VHH ,
and 0.0044 for the hybrid V . The hybrid form V is five
times more accurate than the class-2 potentials (3–5) and
four orders of magnitude more accurate than the class-1
potentials (1–2).

Can V (r) also represent weak noncovalent bonds? Us-
ing Gnuplot, we fitted a, b, c, and e in Eq.(6) to Aziz’s
accurate HFDID1 potential for Ar2 [9] and HFD-B po-
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FIG. 10: Positive potential V (Eq.(6) as in Fig. 9), Kr2 Aziz
points (pluses, blue), L-J form VLJ (Eq.(1) as in Fig. 9).

tential for Kr2 [21] and set d equal to their London-tail
coefficients. Figures 7–10 show that for 2 ≤ r ≤ 7Å, the
hybrid form (6) (solid, red) fits the Aziz potentials for
both Ar2 and for Kr2 (pluses, blue). The Lennard-Jones
VLJ curves (1) (dashes, green) matched at the minima
are too deep for r > 4.5 Å (Figs. 7 & 9) and too hard
for r < 3 Å (Figs. 8 & 10). The potential V (r) of Eq.(6)
represents weak noncovalent bonds better than VLJ (and
VH).

Does it matter that VLJ(r) fails to fit the Ar–Ar and
Kr–Kr interactions? To find out, we used V and VLJ to
compute the dimensionless second virial coefficient B2/r3

0

of Ar and Kr at room temperature (kT = 0.025 eV). Here
r0 is the minimum of the potential, and the second virial
coefficient B2 is the integral over all space

B2(T ) = − 1
2

∫

d3r
(

e−βV (r) − 1
)

(8)

in which β = 1/(kT ). The hybrid potential V fitted to
the curves of Figs. 7 – 10 gives B2/r3

0 = −0.499 for Ar
and −1.35 for Kr, which respectively differ from the ex-
perimental [22] values of −0.552 and −1.41 by 9.6% and
4.1%. The Lennard-Jones potential VLJ fitted to r0 and
V (r0) gives B2/r3

0 = −0.899 for Ar and −1.92 for Kr (er-
rors of 63% and 37%); it also wags a long-range tail with
London coefficients 2 |V (r0)| r

6
0 that are too large by 83%

for Ar and by 84% for Kr. If the parameters r0 and V (r0)
in Eq.(1) for VLJ are chosen to give the correct second
virial coefficient B2/r3

0 for a range of temperatures [23],
then V (r0) is too shallow by 16 % for Ar and 15% for
Kr, and the London coefficients of the long-range tail are
too large by 70% for Ar and by 64% for Kr. With only
two parameters, Lennard-Jones fits are procrustean.

What about additivity ([24, 25, 26])? When three or

more atoms interact, their potential energy is not the sum
of the three (or more) pair potentials. Is the accuracy
of the hybrid form important in the liquid phase where
additivity is only approximate?

To test whether the lack of complete additivity in the
liquid phase obscures the advantages of the hybrid form
V over the Lennard-Jones potential VLJ , we used both to
compute the heats of vaporization ∆vapH of Ar and Kr
at their boiling points at atmospheric pressure. In our
Monte Carlo simulations, we imposed periodic boundary
conditions to reduce finite-size effects. Our Monte Carlo
code is available at bio.phys.unm.edu/latentHeat. We
used it to compute the potential energy U per atom in
the liquid and gas phases. The latent heat of vaporization
∆vapH is the difference between the potential energies
Ugas and Uliquid plus the work done in expanding by

∆V against the pressure p of the atmosphere, ∆vapH =
Ugas − Uliquid + p ∆V .

The hybrid form V fitted to the curves of Figs. 7 – 10
gave ∆vapH = 0.0694 eV (per atom) for Ar and 0.0982
eV for Kr, which differ from the experimental values [22]
of 0.0666 and 0.0941 eV by 4.2% and 4.4%. In equiva-
lent Monte Carlo simulations, the Lennard-Jones poten-
tial VLJ fitted to r0 and V (r0) gave and ∆vapH = 0.0787
eV for Ar and 0.111 eV for Kr (errors of 18% and 18%).
So the errors due to a lack of additivity are of the order of
4%, while those due to the Lennard-Jones potential are
about 18%. Even in the liquid phase, limited additivity
is less of a problem than the defects of the Lennard-Jones
potential.

For a wide class of atom pairs, the hybrid form (6)
can reliably represent the best spectroscopically deter-
mined potentials over all relevant distance scales. It also
yields accurate second virial coefficients and heats of va-
porization. Its simplicity recommends it as a teaching
tool and as a practical form for computation. Given the
differences between it and the Lennard-Jones, harmonic,
Morse, Varnshi, and Hulburt-Hirschfelder potentials, it
would be worthwhile to examine the consequences of
these differences in Monte Carlo searches for low-energy
states of biomolecules and in numerical simulations of
phase transitions and reactions far from equilibrium.
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